These functions manipulate segmetric
objects.
sm_read()
: Load the reference and segmentation polygons into segmetric.sm_clear()
: Remove the already calculated metrics from segmetric.print()
: Print a segmetric object.plot()
: Plot the reference and segmentation polygons.summary()
: Compute a measure of central tendency over the values of a metric.sm_is_empty()
: Check if asegmetric
object is empty.
Usage
.segmetric_check(m)
.segmetric_env(m)
sm_read(ref_sf, seg_sf)
sm_clear(m)
# S3 method for segmetric
summary(object, weight = NULL, na_rm = TRUE, ...)
sm_is_empty(m)
# S3 method for segmetric
[(x, i)
Arguments
- m
A
segmetric
object.- ref_sf
A
sf
object. The reference polygons.- seg_sf
A
sf
object. The segmentation polygons.- object
A
segmetric
object.- weight
Weights to summarize metrics. Accepts
character
options"ref"
,"seg"
, and"inter"
, that weights using reference, segment, and intersection areas, respectively. Also accepts anumeric
vector of weights of the same length as input metrics giving the weights to be used.- na_rm
Should missing values (including
NaN
) be removed?- ...
Additional parameters (Not implemented).
Value
sm_read()
,sm_clear()
: Return asegmetric
object containing an empty list and an environment attribute to store the necessary datasets.sm_is_empty()
: Return alogical
vector indicating if each computed metric is empty.
Examples
# load sample datasets
data("sample_ref_sf", package = "segmetric")
data("sample_seg_sf", package = "segmetric")
# create segmetric object
m <- sm_read(ref_sf = sample_ref_sf, seg_sf = sample_seg_sf)
# plot geometries
plot(m)
# compute a metric
sm_compute(m, "AFI")
#> $AFI
#> [1] -0.004579302 -0.177491523 -0.065702379 -0.178723482 0.391009428
#>
# summarize the metric using mean
sm_compute(m, "AFI") %>% summary()
#> [1] -0.007097452
# clear computed subsets
sm_clear(m)
#> list()