Metrics for assessing segmentation accuracy for geospatial data.
Purpose
The segmetric
package provides a set of metrics for the
segmentation accuracy assessment (or evaluation) of geospatial data.
It includes more than 20 metrics used in the literature for spatial
segmentation assessment (Van Rijsbergen, 1979; Levine and Nazif, 1982;
Janssen and Molenaar, 1995; Lucieer and Stein, 2002; Carleer et al., 2005;
Moller et al., 2007; van Coillie et al., 2008; Costa et al., 2008; Weidner,
2008; Feitosa et al., 2010; Clinton et al. 2010; Persello and Bruzzone, 2010;
Yang et al., 2014; and Zhang et al., 2015).
Extensions
The segmetric
package is extensible and provides a set of functions to
ease the implementation of new metrics. See ?sm_reg_metric()
to find how
new metrics are implemented.
Contributions
Contribution to this package could be done at segmetric
's page on GitHub:
https://github.com/michellepicoli/segmetric.
References
Carleer, A.P., Debeir, O., Wolff, E., 2005. Assessment of very high spatial resolution satellite image segmentations. Photogramm. Eng. Remote. Sens. 71, 1285-1294. doi:10.14358/PERS.71.11.1285 .
Clinton, N., Holt, A., Scarborough, J., Yan, L., Gong, P., 2010. Accuracy assessment measures for object-based image segmentation goodness. Photogramm. Eng. Remote. Sens. 76, pp. 289-299.
Costa, G.A.O.P., Feitosa, R.Q., Cazes, T.B., Feijo, B., 2008. Genetic adaptation of segmentation parameters. In: Blaschke, T., Lang, S., Hay, G.J. (Eds.), Object-based Image Analysis. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 679-695. doi:10.1007/978-3-540-77058-9_37 .
Dice, L.R., 1945. Measures of the amount of ecologic association between species. Ecology, 26(3), pp.297-302.
Feitosa, R.Q., Ferreira, R.S., Almeida, C.M., Camargo, F.F., Costa, G.A.O.P., 2010. Similarity metrics for genetic adaptation of segmentation parameters. In: 3rd International Conference on Geographic Object-Based Image Analysis (GEOBIA 2010). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Ghent.
Jaccard, P., 1912. The distribution of the flora in the alpine zone.
New phytologist, 11(2), pp.37-50. doi:10.1111/j.1469-8137.1912.tb05611.x
Janssen, L.L.F., Molenaar, M., 1995. Terrain objects, their dynamics and their monitoring by the integration of GIS and remote sensing. IEEE Trans. Geosci. Remote Sens. 33, pp. 749-758. doi:10.1109/36.387590 .
Levine, M.D., Nazif, A.M., 1982. An experimental rule based system for testing low level segmentation strategies. In: Preston, K., Uhr, L. (Eds.), Multicomputers and Image Processing: Algorithms and Programs. Academic Press, New York, pp. 149-160.
Lucieer, A., Stein, A., 2002. Existential uncertainty of spatial objects segmented from satellite sensor imagery. Geosci. Remote. Sens. IEEE Trans. 40, pp. 2518-2521. doi:10.1109/TGRS.2002.805072 .
Möller, M., Lymburner, L., Volk, M., 2007. The comparison index: a tool for assessing the accuracy of image segmentation. Int. J. Appl. Earth Obs. Geoinf. 9, pp. 311-321. doi:10.1016/j.jag.2006.10.002 .
Persello, C., Bruzzone, L., 2010. A novel protocol for accuracy assessment in classification of very high resolution images. IEEE Trans. Geosci. Remote Sens. 48, pp. 1232-1244. doi:10.1109/TGRS.2009.2029570 .
Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.,
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 658-666.
Van Coillie, F.M.B., Verbeke, L.P.C., De Wulf, R.R., 2008. Semi-automated forest stand delineation using wavelet based segmentation of very high resolution optical imagery. In: Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications, pp. 237-256. doi:10.1007/978-3-540-77058-9_13 .
Van Rijsbergen, C.J., 1979. Information Retrieval. Butterworth-Heinemann, London.
Weidner, U., 2008. Contribution to the assessment of segmentation quality for remote sensing applications. In: Proceedings of the 21st Congress for the International Society for Photogrammetry and Remote Sensing, 03–11 July, Beijing, China. Vol. XXXVII. Part B7, pp. 479-484.
Yang, J., Li, P., He, Y., 2014. A multi-band approach to unsupervised scale parameter selection for multi-scale image segmentation. ISPRS J. Photogramm. Remote Sens. 94, pp. 13-24. doi:10.1016/j.isprsjprs.2014.04.008 .
Yang, J., He, Y., Caspersen, J. P., Jones, T. A., 2017. Delineating Individual Tree Crowns in an Uneven-Aged, Mixed Broadleaf Forest Using Multispectral Watershed Segmentation and Multiscale Fitting. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10(4), pp. 1390-1401. doi:10.1109/JSTARS.2016.2638822 .
Zhan, Q., Molenaar, M., Tempfli, K., Shi, W., 2005. Quality assessment for geo‐spatial objects derived from remotely sensed data. International Journal of Remote Sensing, 26(14), pp.2953-2974. doi:10.1080/01431160500057764
Zhang, X., Feng, X., Xiao, P., He, G., Zhu, L., 2015a. Segmentation quality evaluation using region-based precision and recall measures for remote sensing images. ISPRS J. Photogramm. Remote Sens. 102, pp. 73-84. doi:10.1016/j.isprsjprs.2015.01.009 .
Author
Maintainer: Michelle Picoli mipicoli@gmail.com (ORCID)
Authors:
Rolf Simoes rolfsimoes@gmail.com (ORCID)
Alber Sanchez albhasan@gmail.com (ORCID)